Self-Supervision on Images and Text Reduces Reliance on Visual Shortcut Features
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Introduction: Methods: Results:

* Fully-supervised deep neural networks often learn * Trained the following four models: Real CNN, Real CLIP, <« Even after fine-tuning on real data, the shortcut-
shortcuts, or decision rules based on spurious Shortcut CNN, Shortcut CLIP. trained CNN fails to unlearn shortcut dependence
association during training that are not useful in * Real vs Shortcut = Type of training data used * The shortcut-trained CNN model is heavily reliant
broader testing and deployment settings. * CNNs - supervised training on clinical labels on shortcuts, failing completely on adversarial test

* Recent self-supervised models like CLIP have e CLIP models - contrastive training w/ radiology data. The shortcut-trained CLIP model is relatively
demonstrated an ability to jointly train image and reports and the BiomedVLP-CXR-BERT text encoder resilient, though still affected.
text encoders. We hypothesized this type of e C(lassification heads added to CLIP models to create 4 e Qualitatively, the integrated gradient maps suggest
pretraining would yield a more shortcut resilient identical CNN architectures that differed only in training that the shortcut trained CNN focuses heavily on
vision model. * Fine-tuned each model on the same 1% of CheXpert the watermarks when they are present.

train set using identical hyperparameters * The integrated gradients are far more consistent

Data: Evaluations: for CLIP, regardless of if there were shortcuts

 Data: MIMIC_CXR (train/val) and CheXpert (fine- e For each label, we generated a shortcut dataset present in the training data or in the test images.
tune/test). (watermarks on all label-positive images) and Conclusions:

* C(linical Labels: Atelectasis, Cardiomegaly, adversarial dataset (watermarks on label-negative e The self-supervision provided by radiology reports
Consolidation, Edema, Pleural Effusion images). We computed AUCs of the models on the promoted learning of clinically relevant features

e Shortcut data: Generated synthetic shortcut data real, shortcut, and adversarial test datasets beyond the watermarked shortcuts, and lack of
from chest x-ray images by randomly  We computed integrated gradient maps for each this self-supervision yielded a more “stubborn”
watermarking shortcuts associated with the labels model and compared consistency between maps and shortcut-reliant model.

Self-supervision with text
improves CNN robustness to
visual shortcut features
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