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Abstract— Interictal spikes (IIS) are bursts of neuronal
depolarization observed electrographically between periods of
seizure activity in epilepsy patients. However, IISs are dif-
ficult to characterize morphologically and their effects on
neurophysiology and cognitive function are poorly understood.
Currently, IIS detection requires laborious manual assessment
and marking of electroencephalography (EEG/iEEG) data. This
practice is also subjective as the clinician has to select the
mental threshold that EEG activity must exceed in order to be
considered a spike. The work presented here details the develop-
ment and implementation of a simple automated IIS detection
algorithm. This preliminary study utilized intracranial EEG
recordings collected from 7 epilepsy patients, and IISs were
marked by a single physician for a total of 1339 IISs across 68
active electrodes. The proposed algorithm implements a simple
threshold rule that scans through iEEG data and identifies IISs
using various normalization techniques that eliminate the need
for a more complex detector. The efficacy of the algorithm
was determined by evaluating the sensitivity and specificity of
the detector across a range of thresholds, and an approximate
optimal threshold was determined using these results. With an
average true positive rate of over 98% and a false positive
rate of below 2%, the accuracy of this algorithm speaks to
its use as a reliable diagnostic tool to detect IISs, which has
direct applications in localizing where seizures start, detecting
when seizures start, and in understanding cognitive impairment
due to IISs. Furthermore, due to its speed and simplicity, this
algorithm can be used for real-time detection of IIS that will
ultimately allow physicians to study their clinical implications
with high temporal resolution and individual adaptation.

I. INTRODUCTION

The paroxysmal nature of interictal spikes (IISs) and their
manifestation as large amplitude, high frequency neurophysi-
ological waveforms [2] makes them particularly strong candi-
dates as potential markers of epileptogenesis. Interictal spikes
(example shown in Fig. 1), are commonly observed through
either scalp electroencephalography (EEG) or intracranial
electroencephalography (iEEG) recordings of epileptic pa-
tients. The diagnostic utility conferred by EEG originates
from its high temporal resolution, allowing physicians to
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Fig. 1. An example of an interictal spike. These spikes are brief (<250
millisecond) morphological events in an EEG recording that occur in
between periods of epileptic seizure.

identify, in real time, patterns or irregularities in the dynamic
electrical activity that occurs within the brain.

The effects of IISs on various facets of neuronal processing
continue to elude physicians and the scope of these effects
remains unknown. Critical to elucidating the pathological
effects of IISs is developing a uniform method of charac-
terizing and detecting them [5]. IISs are currently manually
annotated by clinicians who visually inspect scalp EEG data
or iEEG data. Scalp EEG recordings inherently exhibit poor
spatial resolution and a reduced signal-to-noise ratio [12].
Intracranial EEG (iEEG), though an invasive procedure,
produces waveforms with a higher spatial resolution and
signal-to-noise ratio than that of scalp EEG, permitting better
localization and detection of IISs. Despite the advantages of
iEEG, annotation of IISs is an arduous process subject to
error and varied results since each physician must visually
determine, based on individual experience and knowledge,
which abnormal waveforms appear to be IISs and which do
not.

As a result, several automated IIS detection algorithms
have been proposed to combat variability in IIS annotations
and have the potential to provide a more consistent and
efficient detection framework. Previously, it was thought that
a threshold detector was insufficient to accurately detect
IISs, with some initial detectors yielding a sensitivity of
only 63.4% [6]. As a result, more computationally complex
algorithms have been developed to compensate for the poor
performance of simple threshold detectors. Some of these
algorithms employ template-matching techniques, which are
capable of locating IISs quickly and accurately. El-Gohary et
al. [4] reported a template-matching algorithm that achieved
a sensitivity of 96%. However, these algorithms require a
physician to mark a few examples of IISs in the data before
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application of the algorithm itself.
Other techniques utilize dimensionality reduction methods

via neural networks to transform several context parameters,
such as components of EEG waveforms, into a much smaller
collection of parameters that more precisely capture various
patterns in EEG activity [8]. One such algorithm used by
Tarassenko et al. [10] achieved a sensitivity and specificity of
87% and 96%, respectively, but took over twenty minutes to
analyze what a threshold detector could analyze in approxi-
mately ten seconds. Furthermore, the determination of which
parameters to consider in the classification of interictal spikes
by a neural network remains subjective. Other procedures
approach interictal spike detection using mathematically
intricate decompositions of waveforms that ultimately fail
to establish a uniform definition of the morphological and
physiological nature of interictal spikes.

While the aforementioned algorithms have considerably
advanced the use of computational techniques to address
the need for automated spike detection [1], [11], [3], the
algorithm proposed here revisits the simple threshold rule as
it remains the computationally least taxing. Specifically, we
discuss the development and implementation of an automated
IIS detection algorithm that is able to rapidly analyze iEEG
data and locate interictal spikes without the need for pre-
liminary annotations made by the physician. This algorithm
utilizes a novel normalization scheme to preprocess the data
and then a threshold detector is applied to obtain an optimal
threshold of neuronal activity that maximizes sensitivity and
specificity of IIS detection. The algorithm was trained on raw
iEEG data obtained from seven patients with epilepsy. Each
patient contributed one hour of data, totaling to seven hours
of raw intracranial EEG data obtained. A single physician
reviewed the iEEG data and marked the time points at which
any visually observed IISs occurred on each electrode contact
in each patient.

II. METHODS
A. Subjects and iEEG Recordings

Patients included in this study were surgically treated for
medically intractable seizures at the Brigham & Women’s
epilepsy center. See Table I for patient details. All patients
included in this study underwent invasive pre-surgical moni-
toring with subdural grid-and-strip arrays and possibly depth
electrodes for seizure localization or mapping of eloquent
areas. The research protocol was reviewed by the Brigham
& Women’s Institutional Review Board (IRB). Digitized
data was stored in an IRB-approved database compliant
with Health Insurance Portability and Accountability Act
(HIPAA) regulations.

As part of routine clinical care, up to three board-certified
epileptologists marked, by consensus, the unequivocal elec-
trographic onset of each seizure and the period between
seizure onset and termination. The seizure onset was indi-
cated by a variety of stereotypical electrographic features,
which include, but were not limited to, the onset of fast
rhythmic activity, an isolated spike or spike-and-wave com-
plex followed by rhythmic activity, or an electrodecremental

response. Concurrently with the examination of the EEG
recordings, changes in the patients behavior were sought
from the video segment of video-EEG recordings. For each
patient, we combined surgical notes about the electrodes
corresponding to resected regions and postoperative follow-
up information about how the resection affected the patient’s
seizures.

iEEG recordings were acquired through subdural grid
arrays or depth electrodes in various combinations as deter-
mined by clinical assessment for patients with temporal, pari-
etal, or frontal lobe seizures, with 40-80 recording electrodes
per patient. The recordings were taken over a total of seven
days, and a single clinician chose an hour from each patient
to annotate. This clinician viewed the seven hours of iEEG
recordings and marked IISs as they presumably occurred.
Across all seven patients, only 68 electrodes in total recorded
interictal spike activity. Intracranial contact locations were
documented by post-operative CT co-registered with a pre-
operative MRI.

B. IIS Detection Algorithm

The raw iEEG data was normalized and processed through
the following procedure so that comparisons and manipu-
lations of the data could be made across patients along a
notionally common scale. Initially, a 60 Hz notch filter was
applied in order to significantly reduce noise from the iEEG
signals. Afterwards, the notch-filtered iEEG recordings, re-
gardless of their measured raw values, were normalized to
range [−1, 1], where -1 represents the xth percentile and
1 represents the (100 − xth) percentile. x is determined
independently for each channel and is directly correlated
with the standard deviation of the channel. Finally, a moving
average for each channel across one second, or 250 data
points, was subtracted from the data in order to eliminate
the effect of a changing baseline. In doing so, rapid shifts in
the signal are accentuated while more gradual changes are
diminished. These normalization steps are shown in Fig. 2
and Fig. 3.

Once the iEEG data was processed using the aforemen-
tioned methods, the automated IIS detection algorithm, de-
scribed in Fig. 4 was applied to the processed data. For each
patient, 50% of the time points at which voltage readings
were taken, selected at random, served as the training data
set that the algorithm would use to learn and infer a function
from. If any channel had greater than twenty-five percent of
its time points above an initial threshold of -0.5, then those
channels were disregarded, ensuring that the algorithm was
only detecting channels that had IISs as opposed to channels
that were noisy.

The algorithm was then used to determine the occurrence
of IISs according to a specified threshold value. A very wide
range of threshold values, from -0.3 to -0.7, in increments of
0.02, were chosen in order to ensure the optimal threshold
would be captured somewhere in this range. If the time point
at which the normalized iEEG voltage reading was between
-1 and the specified threshold value, then that time point was
marked as an IISs.
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Fig. 2. Normalization techniques used to remove noise and standardize
data. (a) An example of raw iEEG signal from one of the patients. (b) The
same signal as above after being passed through a notch filter with Q-factor
of 20. (c) The variation-dependent normalization changes the scale of the
signal to -1 to 1.

Fig. 3. Subtraction of the moving average. (a) An example of a channel
with a dynamic baseline. (b) By subtracting a moving average from the data,
spikes are preserved while the baseline becomes flat and more standardized.

In MATLAB, the occurrence of IISs was documented in
the following manner: a two-dimensional array of zeroes was
created in which the rows represented individual channels
and the columns represented their time points. If an IIS
was observed in a particular channel at a particular time
point, a 1 was placed in the corresponding location of the
two dimensional array. As follows, for each patient, a two-
dimensional array was created detailing all of the channels
in which IISs were observed as well as the time points that
said IISs were observed at. We will call this two-dimensional
array X . Physician-annotated spikes were processed in a
similar fashion and recorded in another two-dimensional

Fig. 4. This figure depicts the full workflow for the IIS detector. All of the
steps were used to develop and tune the detector, but in a clinical setting,
only the green boxes would need to be applied.

array that will be referred to as Y. A third two-dimensional
array, Z, was created and set equal to (2X) + Y , such that
for any statistical classification of a spike i, i ∈ Z : i ∈ [0, 3],
where a true positive result is 3, a false positive result is 2,
a false negative result is 1, and a true negative result is 0.

For example, if the algorithm detected an IIS that matched
a physician-annotated IIS, then this would indicate a true
positive result, so a value of 3 would be placed in array
Z at the channel and time point during which the IIS was
detected. Using all four possible statistical classifications, i.e.
true positive, false positive, false negative, and true negative,
true positive rates and false positive rates were calculated. A
receiver operating characteristic (ROC) curve was generated
using the calculated true positive and false positive rates
for each of the various thresholds, which helped assess
the sensitivity and specificity of the algorithm. An optimal
threshold was then chosen that minimized the Euclidean
distance to the ideal scenario of a true positive rate of 1
and a false positive rate of 0.

The remaining 50% percent of the time points at which
voltage readings were taken, i.e. those that were not used
to train the algorithm, served as the testing data set that
the algorithm was applied to. This normalized iEEG data
was run through the algorithm’s detector, but only under
optimal threshold conditions. The resulting true positive and
false positive rates were used to evaluate the sensitivity and
specificity of the algorithm.

III. RESULTS

Fig. 5 contains ROC curves for the seven patients. They
have been consolidated into the single red curve by com-
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Fig. 5. ROC Curves for each individual patient as well as for the
consolidation of all spikes for the seven patients, shown in red. At the
optimal threshold of -.46, the TPR was 98.8% and the FPR was 2%.

puting a weighted average based on number of IISs per
patient. The optimal threshold from this data, which aims
to both minimize the false positive rate and maximize the
true positive rate, occurs at -.46. In other words, our detector
yielded the most accurate results when it marked any data
that deviated by more than .46 from the normalized baseline
as a spike. The automated IIS detection algorithm that we
have discussed throughout this paper has, on average, a true
positive rate of 98.8% and a false positive rate of 2%, which
speaks to the accuracy of the algorithm as a reliable and
independent IIS detector.

With such a high true positive rate, we can conclude
that the algorithm is very sensitive. With such a low false
positive rate, we can conclude that the algorithm is also very
specific in its detection of IISs. Quantifying the sensitivity
and specificity of the algorithm in this way not only allows us
to assess the performance of the algorithm, but also reveals
how useful of a diagnostic tool this algorithm would be
in identifying IISs. Additionally, one pass of the algorithm
through a single hour of data requires approximately thirteen
seconds to run, which is fast enough to translate its use
into real-time detection. However, even if the algorithm is
not currently applied in real-time, its potential as a simple
numerical assessment tool is evident by its performance.

Table I summarizes results for each patient. Our IIS detec-
tion algorithm appears to work consistently across patients
with electrodes implanted in various regions of the brain.

IV. DISCUSSION

Throughout the course of this study, we have reviewed
the development and implementation of an automated IIS
detection algorithm derived from intracranial EEG data from
seven patients that presented with epilepsy. The results of
this work detailed the accuracy of the algorithm and its
ability to reliably detect IISs as compared to those detected
manually by an expert physician. Furthermore, it reveals that
a simple threshold detector, when used in conjunction with
preprocessing of iEEG data, can yield comparable results to
more complex detectors. Future directions of work should

TABLE I
PATIENT INFORMATION: R=RIGHT HEMISPHERE, L=LEFT HEMISPHERE

F=FRONTAL LOBE, T=TEMPORAL LOBE, P=PARIETAL LOBE

ID Implantation Lobes # of IIS TPR FPR
m10 R F T 434 .991 .008
m19 L T P 287 .993 .030
m23 R T 347 .994 .008
m30 R T 42 .976 .029
m32 L F T 177 .983 .027
m36 L T 22 1.00 .011
m40 L T 6 1.00 .019

involve extending this algorithm’s use in real-time such
that physicians can observe IISs as they occur and testing
the algorithm’s robustness using a wider sample of patient
data. As a real-time detection method, this algorithm would
enable physicians to understand the pathophysiological con-
sequences of IISs and their relationship to epileptogenesis,
providing information about when and where seizures begin
in a given patient; and may eventually be useful in suppress-
ing seizures via electrical stimulation via feedback control
principles [13].
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