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Abstract— Seizures in patients with medically refractory
epilepsy (MRE) cannot be controlled with drugs. For focal
MRE, seizures originate in the epileptogenic zone (EZ), which
is the minimum amount of cortex that must be treated to be
seizure free. Localizing the EZ is often a laborious process
wherein clinicians first inspect scalp EEG recordings during
several seizure events, and then formulate an implantation plan
for subsequent invasive monitoring. The goal of implantation
is to place electrodes into the brain region covering the EZ.
Then, during invasive monitoring, clinicians visually inspect
intracranial EEG recordings to more precisely localize the EZ.
Finally, the EZ is then surgically ablated, removed or treated
with electrical stimulation. Unfortunately success rates average
at 50%. Such grim outcomes call for analytical assistance in
creating more accurate implantation plans from scalp EEG. In
this paper, we introduce a method that combines imaging data
(CT and MRI scans) with scalp EEG to derive an implantation
distribution. Specifically, scalp EEG data recorded over a
seizure event is converted into a time-gamma frequency map,
which is then processed to derive a spectrally annotated implan-
tation distribution (SAID). The SAID represents a distribution
of gamma power in each of eight cortical lobe/hemisphere
partitions. We applied this method to 4 MRE patients who
underwent treatment, and found that the SAID distribution
overlapped more with clinical implantations in success cases
than in failed cases. These preliminary findings suggest that
the SAID may help in improving EZ localization accuracy and
surgical outcomes.

I. INTRODUCTION

Over 60 million people worldwide have epilepsy, and ap-
proximately 30% have medically refractory epilepsy (MRE)
in that their seizures cannot be controlled by drugs [3]. For
focal MRE patients, seizures originate in the epileptogenic
zone (EZ), which is the minimum amount of cortex that
needs to be treated in order to eliminate seizures [16],
[20]. Treatments for focal MRE include, surgical resection
of the EZ, laser ablation of the EZ, or stimulation of the
EZ. In order for any of these treatments to work, clinicians
must successfully localize the EZ. The localization process
entails (i) obtaining scalp EEG recordings and imaging data
from a patient over several seizure events, (ii) formulating a
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hypothesis of where the EZ is (both in hemisphere, lobe
and/or structures), and then if required, (iii) implanting
electrodes either at the surface of the cortex or deep in the
brain to cover the hypothetical EZ region. Clinicians then
visually inspect the intracranial EEG (iEEG) recordings over
several seizure events to precisely localize the EZ. Despite
this lengthy monitoring process and despite the fact that large
brain regions may be removed, surgical success rates vary
between 30%-70% [5], [23].

Such variable outcomes are often due to challenging cases
where no lesions appear on MRI scans. In these cases
especially, failed treatment may be partially attributed to
incorrect or insufficient invasive electrode coverage. With
the boom of big data and increased computational power,
computational models should be used to assist clinicians in
forming an implantation plan from scalp EEG recordings.
There are many algorithms that operate on scalp EEG to help
localize the EZ [1], [2], [22]. They directly try to predict the
region of the EZ, but scalp EEG is insufficient to localize
deeper structures that may be involved in seizure events [19].
These approaches do not directly align with how clinicians
currently use scalp EEG and imaging data, which is to form
an implantation hypothesis (i.e. which lobes to insert iEEG
electrodes) for subsequent invasive monitoring.

In this study, we develop an computational approach to
assist clinicians in forming an implantation hypothesis from
scalp EEG and structural imaging data. Our method pro-
cesses a patient’s scalp EEG recordings over seizure events
into a spatio-temporal gamma map, which is then converted
into a spectrally annotated implantation distribution (SAID).
The SAID quantifies the power in the gamma band over
a seizure event in each of eight hempishere-lobe partitions
(HLPs) of the brain: Left/Right Frontal (LF, RF), Left/Right
Parietal (LP, RP), Left/Right Occipital (LO, RO), Left/Right
Temporal (LT, RT). In addition to the patient’s T1 MRI
and CT scans to generate a clinically annotated implantation
distribution (CAID). We applied our method to data from
4 MRE patients treated at the Cleveland Clinic (CC), and
each SAID was compared to the CAID by computing the
Wasserstein distance (see figure 1). We found that the SAID
and CAID are more similar in patients who had successful



Fig. 1: Analysis pipeline for generating SAID and CAID,
where the clinicians produce data to form the CAID and a
spectral model of the scalp EEG produces the SAID.

surgical outcomes and less similar in patients who had failed
surgical outcomes. These preliminary findings suggest that
the SAID may be helpful in formulating iEEG implantations.

II. METHODS
A. Epilepsy Patient Data - Scalp EEG, T1 MRI, CT

The patients included in this study were surgically treated
for drug-resistant seizures at the CC. All underwent invasive
presurgical monitoring with depth electrodes for seizure
localization or mapping of eloquent areas. The number and
location of implanted SEEG electrodes are pre-operatively
planned based on a pre-implantation hypothesis, which is
formulated in accordance with non-invasive pre-implantation
data. Decisions regarding the need for invasive monitoring
and the placement of electrode arrays were made indepen-
dently of this work and solely based on clinical necessity.
The research protocol was reviewed by the Institutional
Review Board (IRB) at the CC.

Pre-operative MRI scans (contrasted with Multihance,
0.1mmol kg−1) were obtained prior to electrode implantation
for use in the electrode placement procedure. CT scans
were performed after electrode implantation in order to
ensure accurate placement and labeling. T1 and CT data was
processed using FreeSurfer, FSL and Fieldtrip Toolbox [9],
[12], [18]. Scalp EEG recordings were initially acquired with
Nihon Kohden system (Nihon Kohden Corp.) with 200Hz
sampling rate. Data were then retrospectively obtained for
review and converted to EDF format for deidentification
and assigned study numbers (e.g. la05), which were then
given to us for processing in no specific order. Board-
certified electroencephalographers marked, by consensus, the
unequivocal electrographic onset of each seizure and the
period between seizure onset and termination. Data was then
preprocessed as .fif and .json files for analysis in Python with
data I/O facilitated by MNE-Python [11].

B. Computing the SAID from Scalp EEG

All data underwent digital filtering with a butterworth
notch filter of order 4, with frequency ranges of 59.5 to 60.5.
We applied a common average referencing scheme to the

data before analysis [17]. This has been shown to produce
more stable results and rejects correlated noise across many
electrodes [10]. We made sure to exclude any electrodes
from subsequent analysis if they were informed to have
artifacts in their recording by clinicians. We then considered
the discrete fourier transform (DFT) (eq 1), which breaks
down a electrode signal, xn with n as the index through
samples of the signal, into its sinusoidal components with
certain magnitude and phase [4].

Xk =

N−1∑
n=0

xne
−jωkn k = 0, 1, ..., N − 1 (1)

This generates the relative contribution of each frequency
component at each point in time for every electrode. We
then represent each electrode’s DFT in terms of its frequency
bands, where we defined the gamma band as 30-100 Hz. We
compute the averaged power in the gamma band for each
electrode into a gamma map, G. Then for each electrode
and its gamma band, we select a baseline as the preictal data
for that patient. We then take a selected window of 10-25
seconds after clinically annotated seizure onset ([W1,W2])
and z-normalize the computed gamma power with respect to
the baseline.

In the scalp EEG, we can discretize the contacts into
eight regions, or eight hemisphere-lobe partition (HLPs) of
the brain for left and right hemispheres: Frontal (LF, RF),
Temporal (LT, RT), Parietal (LP, RP) and Occipital (LO, RO)
lobes. It is worth noting again that scalp EEG is insufficient
to record signals from deeper structures, such as the limbic,
or insular regions [19]. So we mainly focus on the cortical
surface lobe partitions of the brain. From this data, we can
compute an HLP distribution by taking the mean normalized
gamma power across all electrodes and selected times in each
lobe to calculate the mean power of each lobe in the selected
window. These 8 mean power values together will form the
SAID for a specific patient.

C. Computing the CAID of SEEG Contacts

We aim to compare the SAID with actual clinical implan-
tations. In order to localize the iEEG contacts in T1 MRI
brain space, we first localize the contacts in their CT image,
apply an affine transformation to map these coordinates into
T1 space, then apply a segmentation algorithm to map each
voxel in the T1 image to a brain region, and finally apply a
dictionary mapping of each brain region to a lobe (see figure
2). We localize the contacts in the CT image using open-
source software from the Fieldtrip Toolbox [18]. Contacts
with their corresponding xyz coordinates in the CT image
volume are obtained and then mapped to the T1 MRI image
volume space via an affine transformation computed by the
open-source software FSL [12].

In order to make sense of the SEEG coordinates in the T1
MRI brain space, we perform automated segmentation and
parcellation of the T1 MRI image volume using FreeSurfer
[9]. This segments the brain into the Desikan-Killany (34 cor-
tical regions per hemisphere) [7], which assigns each voxel



to an annotated brain region. We then apply a dictionary
mapping that assigns each of these unique brain regions to
a specific lobe as was done with the scalp EEG data. Given
the centroid coordinates of each atlas brain region, we apply
a nearest-neighbor algorithm to assign each SEEG contact to
its nearest brain region. Then, we use the dictionary mapping
of these regions to assign the contact to a specific brain lobe.
Depending on the contact’s hemisphere, if a result is in the
Frontal, Temporal, Parietal, or Occipital lobes, we assign the
contact to its corresponding HLP lobe. Results in the Limbic
or Insular lobes are omitted, as they are not easily assigned to
1 of the 8 HLP lobes. These 8 hemisphere/lobe SEEG contact
assignments form the CAID for the patient. In order to
quantitatively compare the SAID to the CAID, compute the
Wasserstein distance metric between the two. Our code that
describes this entire pipeline is available online at: https:
//github.com/adam2392/neuroimg_pipeline.

Fig. 2: Outline of how the clinical HLP is computed.

Fig. 3: An example of the normalized gamma power for
patient LA04, with hypothesized left-frontal lobe epilepsy.
Note that this patient had a failed surgical outcome, indicat-
ing that the localization of the EZ failed. The white dashed
lines show the selected windows of time used to compute G̃.

(a) Successful outcome patient’s
CAID vs SAID for each lobe.

(b) Failed outcome patient’s
CAID vs SAID for each lobe.

(c) Patient summary (n=4) of CAID vs SAID Wasserstein distance.

Fig. 4: Shows an example of a successful (a) and failed (b)
surgical outcome patient’s CAID vs SAID distributions and
their computed Wasserstein distance between the CAID and
SAID for four patients (c). LA07 only had one seizure event,
so there are no standard error bars.

III. RESULTS

In this section, we show results of our proposed methodol-
ogy applied to 4 patients with SEEG implanted. We apply the
DFT algorithm to sliding windows of data around the seizure
onset, and compute the power within the gamma band. In
figure 3, we show an example of the gamma power around
seizure onset that is normalized against a preictal baseline.
As seen in other studies, we expect a baseline shift in gamma
power that is related to a seizure starting [21]. In figure 3, we
see that the shift in gamma power does not correspond to the
implantation plan for this patient, which is a possible reason
for failed treatment of the EZ (i.e. the invasive implantation
was not correct).

We then compute the corresponding HLP distributions for
each patient and compare to the SAID using the Wasserstein
distance. In figure 4, the CAID is more similar to the SAID
for successful outcomes. In two of the successful patients,
we see a lower Wasserstein distance between the SAID and
CAID, while we see a higher distance in failure patients.
An example of CAID and SAID for two patients is shown
in figure 4a and 4b with the resulting Wasserstein distances
shown in figure 4c.

IV. DISCUSSION

In this study, we examine a quantitative method for
comparing spectral power in scalp EEG to clinical iEEG
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implantations. We do this by defining the contact locations
in brain space for a patient through their T1 MRI and CT
data and computing the CAID Applying a gamma power
spectral model to the data, we can then compute the SAID.
We demonstrate that the SAID could potentially be used
as a metric for planning implantation distributions. In our
preliminary study on four patients, we show that the CAID
is more similar to the SAID in successful surgical outcomes,
while being more dissimilar in failed surgical outcomes.

Although the method we propose is a quantitative repre-
sentation of clinical procedure, there are some limitations to
the study. Firstly, scalp EEG is insufficient to localize deeper
structures such as insular, or limbic regions. A potential way
to augment this approach is with diffusion-MRI, which can
give insight into structural connections of the brain. We could
use this data to infer necessary implantations into deeper
regions of the brain. In addition, error is introduced by the
variability in resolution for both the T1 and CT images per
patient. Furthermore, the seizure onset marked by clinicians
is not necessarily when the brain has actually started seizing,
especially in cases where the seizure onset is deep below the
cortical surface (i.e not directly recordable by scalp EEG).
Because a fixed window around seizure onset is always used,
the characteristics of the data used to compute power in
the gamma band could vary between different patients and
seizure events depending on this time delay.

Our framework can be extended further by allowing
flexibility in the choice of brain atlas [8], segmentation
algorithm [9], and coregistration algorithm [12]. In addition,
this framework is not limited to a spectral model of the
data. In theory, any model that is applied on the scalp
EEG contacts can be used, such as models that include
other frequency bands [1], [6], measures of stability [14],
personalized whole-brain models [13], [15], or measures of
graph statistics [6]. Future work will include analyzing a
larger cohort of patients and different models of the data.
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